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SUMMARY

analysis is gimn of the frequency and dmrping
the free modes of vibrations of balanced fixed~ded
helicopter rotor blades in hovering and vertical
vibrations, benddng vibrations in flapping and h

lagging, and coupling between the flapping and lagging motions me
considered. Erplicit methods and formulas for ‘thecalculation of
natural frequencies and logarithmic decrements of the principal males
me developed, from which general conclusions are rigorously drawn.
Flutter of helicopter blades, which may occur when the blades are
unlmlenced, is briefly considered on the basis of quasi-stationmy
and simple criterions are derived for the stability of the coupled
torsional and flapping vibrations in such cases.

flow,

ImmDucmm

The purpose of this investigation is to present under one cover,
in a lmief and simple fashion, a comprehensive analysis of the frequmcy
and dsqing characteristics of elastic helicopter rotor blades in
hovering and vertical f13ght when they perfom small vibrations about a
state of static equilibrium. Effects which appem not to have been
thoroughly investigated heretofore are considered in detail here. These
include: Consideration of the effect of boundary conditions on the
centrifugal contributions to the natural vibration frequencies of
rotating blades in bending; the effect of free torsional vibrations on
the flapping and lqgging vibrations of mass4mlancedb lades; the effect
of Coriolis, centrifugal, and aerodynamic coupling between the flapping
and l~ing vibrations of a he~copter blade; and a comparison between
aerodynamic and internal damping in the principal modes of rotating
%eems in bending and in torsion.
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The analysis and general formulas have been developed for blades
having any taper and cross+eotional distribution, with the restric-
tion that the shear center and the center of gravity of a cross section
coincide (as is usually the case, for example, for a single-tubule
spar section). Moreover, the case of mass+mlanced blades, that 1s,
blades whose cross+ectional centers of gravity coticide with the aero-
dynaadc centers, haa been emphasized, since atteqpts are usually made
in practice to achieve such a condition. (See reference 1.) Neverthe-
less, the vibrations of unbalanced blades, ckacterizedby coupling
between flapping and torsion with the resulting possibility of flutter,
have been briefly analyzed.

In the case of hinged blades, it has been assumed that the flapping
(horizontal) and lagging (vertical) hinge axes are intersecting and
-perpendicularto the blade axis, so that no change in pitch angle ofia
blade is causedby either flapping or lagging.

The general procedure in this analysis consists first in setting
up the equations of motion of a rotating helicopter rotor blade in
hovering and vertical flight in torsion and in b6nding in two mutually
perpendicular directions (flapping and lagging) and then in solving
these equations either exactly or else approxim%telyby the Rayleigh-
Ritz method.

Unless otherwise stated, the details of the mathematical deriva-
tions have been almost entirely omitted here for the sake of brevity;
however, these details have been worked out by the present author In an
unpublished paper entitled “A Theoretical Analysis of the Elastic
Vibrations of Fixed-lMded Hel.icopterBlades in Fl@ht.”

This work was conducted at the Polytechnic Institute of Brooklyn
under the sponsorship and with the financial assistance of’the National
Advisory Committee for Aeronautics. The author wishes hereby to express
his appreciation for the kind aid given himby Dr. Hans J. Reissner.
The author also expresses his gratitude to Messrs. Charles Chin,
Constantine Dolkas, I!Ymcis G. Hinchey, andltmnk J. Romano for their
assistance in the numerical calculations.

SYMBCK.S

A

AC

B

cross+ectional mea of a blade

value of A at root of a blade

do~w=li factor, equation (2b)

.
.

b
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c

c

co

()‘do ~

()‘%3()

a.

dimensionless parameter
()
.:$

length of chord of a blade section

value of c at rcat of blade

value of profile4rag coefficient of
absolute angle of attack is equal

value of profile4rag coefficient of
zero absolute angle of attack

dimensionless distance between midpoint and shear center

G

h

110,120

1-, I~n

blade section
to eo + 81

blade section

(here, elso center of gravity) of
(fig. 1)

E modulus of structural blade material

e distance between point of attachmmt
axis of rotation; eccentricity

when

at

a blade section

of blades and rotor

shear modulus of structural blade material

acceleration due to gravity

internal damping coefficients in flapping, lagging, and
torsion, respectively

line of intersection of plane (x,y) of rotation and plane
of cross section of blade (fig. 1)

structural moments of inertia of a blade section for
bending in flapping and in lagging planes, respectively

values of 11 and 12 at root of a blade

mass moments of inertia per unit of blade length of a
cross section about principal axes through center of
gravity (here, also shear center)

mass polar moment of inertia per unit of blade length of
a blade section about principal axes through center
of gravity (here, also shear center)

values of
5

and J at root of a blade
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i=~l

●

c’

J

Kl

%2

k

1

m

‘1

%2=

n

P

P

Q

q

R

r

t

torsional moment of resistance of a blade section

dimensionless distance between center of gravity (here,
also shear center) and aerodynamic center of a blade
section (fig. 1)

dimensionlessbend3ng+3tiffness parameter (E1101uAO02Z4)

dimensionless bending+ tiffness pwameter (l?120/.@z4)

constant in the relation c
do = (W& + k#

length of blade

nuniberof blades in rotor system

dimensionless torsional+rigidityparameter (~o/Q2%012)

(%SX- %iIl).
so

subscript indicating a given principal

(-(dimensionless parameter YC
P2c3&+

I& 12

complex frequency; if p =-Rkim (R

mode of vibration

and u) real)
then u/27c is the natural frequency in cyoles per
second.,while 2Jt~ is the logarithmic decrement

dimensionless

dimensionless

tip radius of

parameter L -)

local radius of

time

complex frequency

a blade from axis

a blade element

(P/Q)

of rotation

from axis Lf rotation

.“

w
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T dlmensio~ess bending (lagging) deflection in the direction
of a prticipal.axis yl (fig. 1) of a blade seotion

w gross weight of helicopter

w dimensionless bendiug (flapping) deflection-in the directim
of a principal sxis Zl” (fig. 1) of a blade section

‘i,o
induced downwash velocity in steady state

wo~p local slope of a deflected blade in flapping in the
steady (static) state

a local absolute emmle of attack of a blade section

basbi aerodynamic and internal (structural) logarithmic decre-
ments, respectively

E eccentricity ratio (8/2)

e local twisting angle of a blade section

[

1

z(t) = ~-e(~,t) d~

o

e. design, or initial, blade angle (fig. 1)

el angle between zer-lift line end principal sxis Y1 of
a blade section (fig. 1)

E dimensionless distance ~mg a blade, measured from root

P air density

G average density of blade material
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‘r(g)

n

u)n

‘cn

%Tl

dimensionless centrifugal-force

m= speed of rotor system, radians per second
4

natural frequency of tibration of an elastic rotating
blade in a given principal mode

value of

%

if blade had no bending stiffness, that is,
ifKl= =0

mlueof~ iffl=O

● a=—
at

BASIC EQUATIONS

The basic Ufferential equations for the small flapping, lagging,
and torsional vibrations, respectively, of a helicopter blade in
hovering and vertical flight about its position of static equilibrium
can be written in the follow5ng nondimensional form:

(la)
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() [(
c; L 29. +61-2

co ‘;,o)~-B:F)-:po +el)e] +

7

(lb)

(lC)

Equations (la) and (lb) represent the equilibrium of the elastic,
interti daqping, centrifugal, inertiaj ad aero-c ~0* at ~Y
point ~ per unit length along a blade. In equation (la) these loads,
as well as the dimensionless displatement w, are in the direction of

the principal exis Z1 of a cross ssction of a blade (see fig. 1).
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In equation (lb) the loads and
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the displacement v are in the direction
of the other principal axis yl of’a cross section (fig. 1). If the
blades are hinged then w and v represent the sum of–the elastic
deflections and the comonents of the rlgid+ody dlsphcements in the
directions of the principal sxes Z1 and yl, respectively.

The aerodynamic loads here have been derived, as in reference 2,
by use of the thre-imensional Kutta40ukowski theorem for quasi-
stationsxy flow. The induced downwash, however, has now been assumed
as constant throughout the rotor disk and as derivable by the simple
momentum theory. (See reference 3.) The only difference, in fact,
between the hovering state and the state of uniform vertical clinibingor
descending in equatians (la) to (lc) lies in the values of the downwash
veloolty wi,o and of the downwash parameter B.

By the momentum theory, the values of Wi,o and B for a heli-

copter clinibingvertically at a constant speed of PC can be shown to
be:

(2a)

where the drag of the helicopter in clinibinghas been assumed to
be kDW, end W is the gross weight of the helicopter.

It has been assumed, in the derivationof equations (la) to (lc),
that theprofil~ag’ coefficient c% of a blade section varies

parabolically with the angle of attack.

I?romthe conditim that the static thrust must support the gross
weight of the helicopt-er,the required value of the absolute pitch
awie (e. + 191) of a biade, as&med
found to be:

constaniialong its length, is

w“

(3)

b

.—

.

u
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* ‘Themechanical significance of each of the terms appearing in
equations (la), (lb), end (lc) is as follows. The terms proportional
to Kl, K& or Ml represent the elastic resistance, while those

proportional to ~, ~, or ge represAat internal damping. (See
reference k.) The terms (Twi)’ and ~ eo~ in equation (la), the

_k’IIIS (Wt)’, ~ T, snd
Ao

4 00W in equation (lb), and the &termin
43

equation (lc) are due to the centrifugal loads. The terms with ;, ~,
Ax+

and 6 represent inertia loads, while the terms 2 ~
.Zz

and 2-4&~; gtve the Coriolis effect. ~ equati&s (la) snd (lb)

the terms proportional to C represent the aerodynamic loads, while in
equation (lc) these loads sre represented by the terms proportional
to Q snd to P. For mass4alanced blades, Q = O. The terms in i?
and F give the effect of induced downwash. Finally the term #-&e

In equation (lb) represents the effect of the weight of a blade.

TORSIONAL V713RATIONS

From equation (lc] it can be seen that if the blades are mass-
balanced, implyi~ Q = O, then the torsional vibrations will not be
coupled to the flapping vibrations. This case of balanced blades is the
one which is treated in the present section on torsional vibrations and
in the following two sections onvlbrations in flapping and lagging.

l?requencycharacteristics.-By putting

into equation
the following

e(~,t) = e(g)ept (4)

(lC) with Q= O, and neglecting damping for the present,
equation is obtained for e(~) and qs~:

--I*

1

+q2&e=o
(5)~ (~ - %in)o so
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If the

fixed pitch
is obtained

blades have a~ifozm cross~ectional

at the root (e = O at ~ = O), then
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distribution and have

the following solution
for the principal torsicmal modes of vibration:

n odd,n~l I (6)

The term en(g) represents the principal modes of deflecti~~

rwhile & “~n2 is the natural %equency in cycles per second in

the
“n+l
~th mode, if Q is in radians per second.

It is significant to note from the results of equations (6) that,

since M2, which represents the effect of the centrifugal torque, is in
actual cases negligible, the natural frequencies, as well as the modes
of vibratti, of a rotating helicopter blade in torsion me virtually
the same as those of the same blade when it Is staticmry (a = O).
This conclusion is valid for tapered, as well as for rectangular, blades
(cf. appendix A).

If the blades have a variable cross-ectional distribution, then
the natural frequencies of the various modes of vibration can be dete~
mined by the procedure, based on the Rayleig&Ritz method, shown
explicitly in appendix A.

DsJ@ng characteristics.-Let the natural frequency of the “kth”

principal mode of vibration tithout -~ be ~o~ ad let the corr~
spending mode of’deflectim be eno(5)“ Then it-may be assumed that fo~
this mode with damping the deflection shape willbe given approximately

bY eno(~)= Therefore, with the assumption

for the damped vibratiom of the kth mode, where p may now be complex,
differentiation of the integral in condition (Al) of appamlix Awith
respect to b leads to a quadratic equatian in q whose roots (with ~
neglected) indicate the fo~~~g ~ues of the nat~aJ- frequency ~d~
aerodynamic logaritmc decrement am~ and internal logarit~c
decrement bin oflthe kth mode:

.

.
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i

where

.

x

.

Equation
frequencies.

.

5
in = IrgQ

(7) “

(8)

(9)

(7a)

1s ()rC 3
.— %lo2(E ) u

P OZco ‘e ‘no
l-im=~ ——

s

’20
1 Ip
— eno2(E) M

o %

(7) gives the correction, due to damping, in the natural
This correction will usually be found to be negligible in

all modes above the fund~tal.
-—

Equation (8) shows that the aerodynamic logarithmic decrement in
anY given PrficiP~ ~de has ~ order of magnitude of

-%%
and veries

approximately inversely as the natural frequacy. Thus, the aero@amic
bg~ithdc decrement decreases with the ~de of ~ibration. Equation (9)
shows that the internal logarithmic decrement is, on the other hand,
independent of the natural frequency and therefore remains the same in
all modes. This result for the intefial damping is due to the negligible
effect of the centrifugal twisting couple in any cross section of a
rotating helicopter blade.

Since in general g~ << P, it follows from equations (8) and (9)
that in the fundamental, and possibly second, mode the aero@smic
dsmping will be greater than the internal damping. In the high modes,
however, the internal damping will predominate.

w
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It should be noted that, although equation (9) indicates the same
internal logarithmic decrement for stationary as for rotating beans,
equation (8) shows that there will be no aerodynamic damping if the beam
is stationery (ba = O if 0 = O).

Ihmerical example.- Consider a blade of constant cross section along

the Sp~, tith the data of figure 2. Then ono(~) = s~n~~ for the
n+l~th mode. Moreover, it is found that Ml = 37.0 and F = 7.35. In

virtually all cases, M2 s 1. Eere let M2 =.0.7. Finally let ge = 0-05.
Itromequations (6) it is found that (damping neglected)

The fundamental (n = 1) natural frequency in torsion is thus quite
high, being here almost 10 times $&u otor angular speed. From equa-

tion (’l’a)j~n =
J

7.35 ~.25 + ~ + o.23*. For the fundamental

mode (n = 1), equation’(7) there?ore’gives:

indicating thus a decrease, due to dsmpi.ng,of about 5 percent in the
fundamental frequency. The effect of the damping on the natural
frequencies in the higher modes (n = 3, 5, . . .) WUJ. be ~ch sml~er,
as can be seen from equation (7) with the expressims for qm and ~

Q
here in terms of n. From equation (8), it is found that ~~ = 1.780”

1.20
and 5mZ— for n >3. Moreover, bti = 0.1570 for any mode.

Thus in the &dsmental mode the aerodynamic damping is here over
10 times as great as the internal damping. ~ the second ~de (n = 3),
however, ba is reduced to less than one-fourth of its value in the
fundamental mode, while 51 remains the same. 3ilthe fifth and higher
~des (n > 9), the i.nterm.aldamping exceeds & aerc@mmic daqing.

BENTXD?GVIBRJYTIO.NS IN FIA.PPING

n considering bending vibrationsin flapping the small coupling
between the flappimg and lagging vibratims wll.lbe neglected, Moreover,
it will be assumed here that the blades sre nuzss+alanced. In that case
the torsianal vibrations canbe detemnined first, as in the preceding

.—

K

.

v
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section, by obtaining 8 arplicitly as a functlo.nof ~ and t. This
hewn function can then be substituted for 8 into equatian (la), which
is the basic equation for the ~tion of qblade h flapping.

IYequency chsracteristics.– The natural frequencies of the free
vibration modes of a rotating blade in flapping are determined by the
equation

(la’)

The effect of damping is not included in equation (la?). By putting

W(tj,t) pt
=“w(~)e

equation (la*) becomes:

()=11 j, “
1~

–(-rw~)’ ++q%. o

The values ,of q2 determined
mode of yibration can be expressed
reference ~):

(10)
%

by equation (10) for any principal
approximately in the form (see

‘%2=‘en2+‘cn2 (U) “-

where %12 is the value of %2 when the besmis stationary (O = O),

2 is the value of qn2and ~n when the blade is ~otheticall.,y

rotating without bending stiffness (K1 = O). The values of qa

represent the effect of the elastic resistance of the blade, while the
values of ~ represent the effect of the centrifugal loads.

The following remrks concerning relation (U) are pertinent. It
can be shown (appendixB) that relation (n) would be exact if and only
if the centrifugal loads would have no effect on the modes of deflection
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of a rotating beam.
simple consideration
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It can also be shown (appendixB), however, by a
of boundary conditions, that equation (11) cannot

be an exact general statement f~r eithe~fixed-ended or hinged blades
and that the centrifugal loads must therefore in general have some
effect on the modes of deflection. It shouldbe further noted that the
values of ~n must, according to relation (11), be independent of the
boundary conditions of a blade (cf. appendix in reference ~). It can
be shown (appendixB), however, that there are theoretically no exact
values of ~n2 for a blade fixed at the root. (This may be considered
as a simple proof that relation (lI_)cannot be exact for fixed-ended
blades.)

In spite of the fact that equation (11) cannot be an exact general
statement, this relation gives sufficiently accurate results for
practical purposes. This is due to the fact that; although the centrif-
ugal loads do have an effect on the modes of deflection of a rotating
beem, this effect is ordinarily small both for fixed-ded and hinged
blades. (See references 6 and 7.) As a numerical check on the accuracy
of relation (11), the values of the natural frequencies of’a hinged
blade were calculatedly solving equation (10) without the use of
relation (11). Approximate solutlcms for the lower modes (see appendix B
for details of the method) showed.that-the natural frequencies as func-
tions of the paremeter K1 could to a high degree of approximation be
represented in the form of equation (l-l). Moreover, a numerical check
(appendix B) was made on the effect of the root conditions of a blade

2 to the negative squared naturalon the centrifugal contributions ~n
frequencies, and this effect was found to be practically negligible.

2 in relation (11) depend only on the massThe values g: ~n
;*

distribution — (~) of a blade alcmg its length and are the same
(aA)o

for a fixed-ended as for a hinged blade. The values of %2, on the
other hand, are in general directly proportimal tu the parameter K1
of a blade and depend on the boundary conditions at the blade root, as
well as on the cross-ectional distribution (i.e., plan form).

.

v

.
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For blades of gonstan~ cross section, the

In the various principal modes are as follows:

“ fixed-nded blades:

%n2/Kl

15

values of &2 and &2

= x2.36, 481, . . .S (~ n)4 (mro~-)j .-.

%n2 = 1, 6,

hinged blades:

-%n2/Kl = ‘~

%n2 = 1, 6,

n >5odd, n =

. . ● 9 n(2n -1),...

n a positive integer

236, . .
()

14
., xhn+~ (approx.), . . .

n a positive integer

. . ● 3 n(2n-1), . . .

n a positive integer

For blades of Tariable cross section a simple procedure, based on

the Rayleigh~itz method, of calculating the frequency characteristics
is given explicitly in appenddx B.

The values of the frequency ratios m/o in the various modes of
vibration of a blade in flapping ere evidently functions of @ one
parameter, Kl, in addition to being .dependenton the plan form of the
llade. Typical values of K1 are usually small. For the single
tubul~par section in figure 2, for ex~le, ‘1 = 0.00400. Conse-
quently, the actual contribution of the elastic resistance of a heli–
copter blade to the natwal flappx frequmcy in the fundamental mode
is small in comparison tith that of the centrifugal forces. In the
higher modes, however, the relative importance of the elastic resistance
rapidly Increases. The natural frequency of a fixed+nded blade in any
prticipal mode will, of course, be higher than that of the same blade
when it is hinged. If K1 is of the order of magnitude of unity this
difference will be especially great in the lower modes. However,
wh~ K1 <<1 (as in the’tubu-par secticm, fig. 2), then the
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natural frequencies of a fixed-nded blade are only slightly higher than
those of a hinged blade. These conclusions em, in part, illustrated
by figure 3 end figure 4, where numerical results me plotted for a
uniform blade of low bending stiffness hinged at ths root and fixed at
the root, respectively.

Rigid40dy oscillatim as a mode of’vibration.- If the blades me

hinged at their roots, and if their flapping hinges pass through the
axis of rotation of the rotor system, so that ~ = ~, then -thedeflec-

tion shape w = a~, where a is a constant, will be an exact solution
of equatiop (10) with q2 = –1, regardless of the plan form of the
blades. This shows that, if damping and small coupling effects are
neglected, then a rigfi-body oscillation of a blade in flapping will be
an exact fundamental mode of vibration. In this mode, m = Q exactly.
If, however, aero@amic da@ng is considered, Implying addition of

,&-@
the term C -~c ~ to the left side vf equation (la’), then it

can be seen that equatfon (10) will no longer be exactly satisfied
by w = a~. In this case, the rigiii+ody oscillations will be an
approximate, but not-exact, mode of vibration of the blades.

following equ@ion for w(~) ~d q is obtained:

()
11

K1 3W’” -(TW’)’ +

110

;--,(W-15J. O~qpw+crc
&

By mathematically transforming this equation into’”astationary coniLi-
tion,~ and applying the Rayleigh method with the assumption that the
damping has a negligible effect on the principal modes of deflection,
the following relations are obtained for the effect of the aerodynamic
damping on the natural flapping frequency of any mode (denote&by
subscript- n) and for the aerodynamic logarithmic decrement–-bm in
any mode in flapping:2

lIt is interesting to note that it is here possible to derive
rigorously the stationary condition of an integral for a noncms emvative
system afte~making the substitution w(~,t) = w(g)eP~.

21n terms of the value of the complex frequency qnd for any mode
with damping, equation (13) implies:

—

.
.-
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%d .
%-

5.-

(12)

(13)

where ~d is the natural frequancy for the damped mode, %0 ‘s ‘he
corresponding natural frequency without damping, and ym and ~

are constants for each mode, defined as:

\21

no(~) ‘sHere, w

&%cm‘~
the mode of deflection without damping. ..

logaitludc decrement, derived and discussed in detailThe internal
in reference 4, is:

2
‘en

bin =x&—

%12
(14)

From equation (U), which gives the effect of the aerodynamic
damping an the values of the natural frequencies, it follows that this
effect decreases with the mode and will in actual cases be negligible
in all principal modes with the possible exception of the fundamental.
In the fundamental mode, h fact, the -ing may in some cases (namely,
those cases for which the paraamter C is sufficiently large) be so
heavy that this mode will consist of an unoscillating decaying motion
instead of an oscillating mtion.
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Since the actual value of.-.7n~n~n will%e
the order of magnitude of C~2) for any mode,”it
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roughly the same (of
follows from equa-

tion (13) that ban will deerease with the mode, in virtually inverse
proportion to the natural frequency. C!oqarison of actual orders OL
magnitude (O(C) ‘1> O(gw) = O.0~) shows, according to equatimns (13)
and (14), that except in the very high modeq, where bm + a~x ~~~ %W3

the aerodynamic damping will.exceed the internal damping. The latter is,
in fact, negligible in coqxarisonwith the aerodynamic damping in the
fundamental mode. Because of the aerodynamic effect, the flapping
vibrations in the lower modes will in general be h@hly damped.

Numerical example.– For a uniform blade with the data of figure 2,
on-efinds: K1 = 0.00400, C = 1.74, and B = 0.532 (equations (2a)
and (2b)with Vc = O and R + 2).

t #
or fixed- ed blades, it is

permissible tu substitute wno(g) = ~ –k!is + 65 into equations (X2)
and (13) for any mode.3 For hinged blades, the substitution ‘no(~) ‘5

may be made in these equations.
(

It iS thus found aSSulld~ $ =E)

that &=2”312 55 = 1.105 when the blade is fbed-ended, and — = 0*995
● E

when the blade is hinged. Moreover, for fixed=nded blades,
y. IM.36 x 0.004 + 1 = 1.024; for hinged”<lades,”’

‘%0 - ~oxo.oo4+l= 1 in the fundamental~de without damping.
*—
.—

Q
With aero@mmic daqdng taken into account, these fundamental frequen-
cies change thus:

— .

.

= 0.862

Thus aerodynamic damping diminishes the fundam&ntal frequency here by
about 13 p&cent for both the fixed-ended and the hinged blade. -

In the second and higher modes, however, ths eff’ectof the damping
on the nat~al frequmcies Is here negligible, since the value

‘f PnJa)
rapidly increases (over 6 in the second mode), while the

3Since the value 7mfi does not vsry greatly with the func- —.
t-ion Wn (g), it-follows that,

?

in actual calculations, rough assumptions
for Wno ~) in equations (12) and (13) will suffice to give sufficiently .

accurate results for practical purposes.

.
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.

. remains approximately the same, about 1/4 here.

decrements- (5= + b~) for both the hinged and

fixed-ended blades, with gw assumed as 0.05, are shown in figures 5
end 6, respectively, plotted against the principal mode of vibration.
I?orcomparison with internal dan@ng, the aerodynamic log=ithmic
decrements are also plotted separately in these figures.

Effect of torsfo.nalvlbratims on flapping vibrations.- The free

torsionsl vibrations of a mass+al.anced blade in any principal mode
have an effect on the free flapping vibrations of the blade similsr to
that which an external damped hsmonic load would have, if the frequency
and dsmping of this load sre the same as the frequency and damping of.-.
the corresponding torsional mode. This effect canbe determinedly

stistituting the known function 13= ~n(g)epnt for any principsl mode

in torsion (cf. TORSIONAL TIBRATIONS) into equation (la) and then
solving for w(~,t). By this procedure it can be shown that corre
spending to each principal mode of vibratim in torsion of frequency ~
~d log~tt=c decrement bn there will appear in general a component
of vibration in flapping of the same frequency and logarithmic decrement.
It can be shown, however, that in all actual cases the ratio of the
amplitudes of these “quasi-forced” flapping vibrations to those of the
corresponding “quasi-forcing” torsional vibrations wi~ be of the order

of magnitude of
+lCO 1.——

(~jQ)2 4 2 ~/0 ‘tice~p~actfce
*>>1

(cf. TCIRSIONALTE3RATIONS) it follows.that the relative amplitudes of
the quasi–forced flapping vibrations will be so small that the effect
of free torsional vibrations on the flapping vibrati~s of ~-b~aced ___.
blades may in practice be neglected.

B3WDINGVIBRATKNS IN LACXXXG

The characteristics of the lagging vibrations of a helicopter
blade, virtually in the plane of rotation, are discussed in this section.
Coupling effects are here neglected end are discussed in the next
section.

—

ltrequencycheracteristics.- According to equation (lb) the natural

frequencies of the free uncoupled lagging vibrations of a blade, with
daqing at first neglected, can be detemined from the following
ordinary differential equation for V(E) and q:

%( )12 ~,,“
~

– (+)’ + &(q2-+’= 0 (15)

●
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A coqtison of equation (15) with equation (10) shows that—

.

.

if & (E) ;* (E), ~ ~~

simple relation exists between

ordinarily be the case, then the following

the natural frequencies in lagging and

.l#(Q _$’ (16a)

flapping:

where Oz Is the

mode, ~f4Q) is
flapping with K1

0322

natural frequency (in cps) in lagging for any principal

the natural frequency of the corresponding mode In
replaced by K2, and Q is the rotor angular speed

(inrps here). Relation (16a) is valid for fixed-ended blades as well
as for blades with both flapping and lsggfng axes hinged..

From equation (l-l)for flapping, it is evident that-relation (16a)
can also be expressed in the following form for any principal mode
(characterizedby subscript n)-:

%22 2 + U&J= %n2 (16b ) .

where
--

.

(16c)

2 2
‘cn1 = ‘Cnf -

~2 (16d)

to the values in lagging
to the squsre of the

The subscripts 1 and f refer, respectively,
elastic contributionend in flapping. Thus the

lagging frequency of-any principal mode is the same as the elastic
contribution.to the square of the corresponding flapping frequency,
except that the former is proportional to B@ while the latter 5.s
proportional to K~. This fact is representedby figure 7. l?rom
equation (16d) it follows that the centrifugal contribution to the
square of the lagging frequency of any mode is less by a fixed
mount (02) than the centrifugs3 contribution to the square of the
corresponding flapping frequency.

From equation (16a) it follows that if ~ =Kl (as in singl~
tubular-spar sections) then the lagging frequencies of’all principal

-.

.

.
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modes will be lower than the corresponding flapplng frequencies. In
the fundamental nmde, where of x Q (because of the acttil low values
of the bending-stiffness parameter KI), the lagging frequency will be
very low. In the higher modes, however, the difference between the
flapping and lagging frequencies, if K1 = ~, becomes relatively less

and less. If, on the other hand, K2 >> K1 (as for structural airfoil
sections) then the natural lagging frequencies will he greater than the
corresponding flapping frequencies, often even in the fundsaientalrode.
In that case, in faot, the following simple relation willbe valid for—

12
It maybe remarked that if K1 =% and --(5).2 ~lo (~)j then

the principal modes of deflection of the free undamped uncoupled lagging
vibrations willbe exactly the same as those of the corresponding
flapping vibrations, provided of course that the root conditions of the
blades be the same (e.g., both fixed+ded or both hinged) in both
flapping and lagging.4

Effect of a small.eccentricity.– If the blades exe hinged at the

rotor axis of rotation then in the fundamental flapping mode, ~ = s2.
In this case, equation (16a) imp~es Ot = O, signifying the absence of
a centrifugal restoring force. Such a situation is easi~ remediedby
attaching the blades at a small distance (eccentricity) e away from,
tistead of at, the axis of rotation. The effect of such an eccentricity,
for both hinged and fixed+ded blades, can be expressed by the relation:

e
where u and Q exe in cycles per second, c . —,

z

Jo

(17)

4The condition K1 =@ is necessery only because of the s&ll

effect of the centrifugal loads on the modes of deflection.
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and X(g) iS
valid for any

the mode ofideflectlon in flapping.
principal mode in either flap@ng or

NACA TN 1999

Equation (17) Is
lagging.

In accordance with the Rayleigh method,
in flapying ~cf of a flexurall.yweak cable
csn be expressed approxima.tely~in the form:

the natural frequency
(K1 = o) with-c =-0

pl

where

J1

Hence equation (17) can be written approximately in the form:

(18)

~The aPWoxi~tion in the equation consists in neglecting the
effect of the centrifugal loads on the modes of deflection.

The coefficient-of (Ocf)ea 2 in equation (18) is almost independent

of the mode of deflection X(5) and is greater than unity for any mode.

It is evident from equatim (18) that an eccentricity of attachment
or the blades increases the natural frequency of any mode in either
flapping or lagging end that this Increase is.~eater the higher the
mode, since u)cf2 increases with the mode. However, for the reason
already explained, this eccentricity effect is especially important in
the fundamental lagging mode of a hinged blade.or of a fixed+nded
blade with a low bending stiffness ~ in the plane of rotation.

For the fundamental mode, it is permi~sible to substitute--X(E) = ~
for hinged blades or X(E) = @ --4~3 + 6~ for fixed-ended blades into
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.

.

equation (17) or (18). If $(~) =1, then for equation (17) it

iS thus found that ~ = 1.5 for a hinged blade and ~ = 1.558 for a

fixed-ended blade.

Dsmping characteristics.- In a manner analogous to the derivaticm

of equations (12), (13), and (14) for flapping, the fo~owing values
can be obtained for the natural frequency and for the aerodynamic and
the internal logarithmic decrements in any daurpedprincipal lagging
mode (chmacterizedby stiscript n):

-?=m@ ‘(19)

(20)

2
%

%
=Jf&— (21)

%12

where

Jo

md Yn(g) is the un-ed mode of deflection in lagging. The value
of the ratio ~~am is dm.ost indepaudent of the deflecticm

shape Yn(~).

Since in actual cases the quantity (Y-/2-~)2 will be negligible

2 it follows from equation (19) that theh COIUp~is~ tith (~o~ )
effect of daqping on the lagging frequencies is in general..negligible
in all modes. The logarithmic decrements in lagging will vary with the
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mode of vibration in a manner quite similar to thafin flapping (see
BENDINGVIBRATIONS IN FLAPP~G).

*
It must-be observed, however, that the

magnitude of the total (i.e., aerodynamic plus internal) damping is, in
the lower modes, much smaller than that in flapping. The value of b=

in l~ing is,
(Cdo)l %f

in fact, of the order of ~— times that in
%1

flapping. In the fundamental mode, this ratio~be about-1/30. The
internal damping in lagging is at least of the seam order of megnitude
as the aerodynamic damping in the fundamental mode of fixed-ended blades
and is therefore relatively much more Important in lagging than in
flapping.

Numerical exsmple.- For the uniform blade with the data in figure 2
snd e = O.~, the values of’ the undamped natural frequencies in lagging
are plotted against the mode of vibration in figures 8 and 9 for hinged
and fixed-+xxiedblades, respectively. The logeritbmic decrements in
lagging with (c% )1 = 0.03 md gv = 0.05 me plotted in ff~es 10

and 11 against the modes of vibration.

Effect of torsional vibrations on lagging vibrations.- The free

torsional vibratio~ of-mass+alanoed blades have an effect on the free
lagging vibrations which is quite similar to thatiwhich they have on the
free flapping vibrations (see BENDING VTBRATIQNS IN FLAPPING). This
effectj which is mathematically represented by the t-ems with 19 in
equation (lb), can, however, be shown to be negligible, because of the
very low order of magnitude of the relative amplitudes of the lagging
vibrations induced ly the torsional vibrations.

●

.

CENTRHTGAL, CORIOLIS, AND AERODYNAMIC COUPLING

BETWEEN FLAPPING AND LAGGING

In gdneral, there will be centrifugal, Coriolis, and aerodynamic
forces which couple the flapping and lagging vibrations of a helicopter
blade. These forces are represented mathematic lly in equations (la)
and (lb) as follows: The terms ~ eov and l?~ eow represmt the

centrifugal coupling loads ~er uni~ length of the blade; the
A Wog +A~~ and ~——-

terms 2Z 3Q represent-the Coriolis load;

,co~o::)-%]:finally the terms -C ~~

.
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●

and C ~

.

.

coupling
order of

W.?
of —.

z

(. )(Wio+ R-$200+Q1–2~c–BT W
)

rep~esent the aerodynamic

l~ads.6 All these loads are evidently of a relatively low
magnitude because of the actual low values of 60 and

Consequently, for a first approximation, these coupling terms

may, as in the preceding two sections, be neglected.in determining the
frequency and deqing of any principal mode in either flapping or
lagging. The effects of the coupling on the frequency and damping
characteristics of any mode can then be taken into account by making
the corrections described in the following discussion.

Effects of coupling on frequency and damping characteristics.-By

putting

into equations (la}
e~ressions for the

W(g,t) =’w(@

T(E,t) = v(E)ept

P
~*~—

and (lb) it is possible to derive the following
complex frequencies %fl ‘d %21 ‘or ‘y

principal mode (characterizedby subscript n) in flapping and in
lagging, respectively, with the simultaneous coupling loads taken into
account:

(22a)

%21 = %20 -
~ $J?pn-QF.-w ‘neoqnqnzo- “’02

(2%’nZo %20 – %0)[ (Yn + an qnzo + ‘nfO)]

(22b)
~lt ~ be note

d from equations (la) and (lb) that the aerodynamic
loads directly oppose the Coriolis loads but do not.in general cancel the
latter.
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where 1+-Ecj SJId CInto are the complex values of q in the corre-

sponding uncoupled, though damped, ~des in flapping ~d l%gi~j

respectively, and where ~, ‘~, . . . are real constants for each

uncoupled mode defined thus:

Here Wn(~)

flapping and

Jo

d ()

Jo

and Vn(~) sre the

lagging vibrations,

)3 _“2wo
‘z% ~ Wnvn dg

modes of deflection of the uncoupled

respectively.

equations (22a) and (22b) is that,An advantageous property of
according to the forms of these eq&tions, the numerictivalues of the
corrections tO ~fo ~d qnzo will be rather insensitive to the

fo~ wn(~) and Vn(3) of the deflection shaPes substituted into

.

●

✎

.

.
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these equations. For purposes of a quick calculation it is therefore
suggested that the substitutions wn(E) = V.-(E)= E

and Wn(~) = v=(g) = # - 4~3 + 6g2 be made for any mode for hinged
blades and for fixed-ended blades, respectively.

From equations (22a) and (22b) it is found that in general the
order of msgnitude of the corrections, due to coupling, in the natural -
frequency and logarithmic decrement of any principal mod? in flapping

or lagging will be that of second powers of 80 and & Thus, the
2

coupling wilJ.have what my be considered a second-rder effect on the
frequency and damping cluu?acteristicsof any mode. This effect may,
nevertheless, be quite appreciable in the fundamental lagging mode,
since the damping decrement (i.e., the negative real part of q) in
this mode is generally very small, while, if the bendtng ‘stiffiess
(representedby the dimensionless parameter @) of the blade in legging
is small (as in the tubfl~pay section, fig. 2) the natural frequency
in this mode will also be low.

Numerical example.= Consider a uniform blade with the data h

figure 2. AI.solet 61 = 0.02, ~ = 0.05, ~d gv =gw = 0.Q5. Th~
from equation (3), 60 = 0.1273.

(a) Fixedanded blades: For the fundamental mode in flap@ng (see
Numerical example under BENDING VIBRATIONS IN FLAPPING and equation (17)),

_ 1.105+i
%fo 2 J ()1.105 2

1+12.36x 0.004+0.05x1.558) - ~

=4.533 + o.907i

For the fundamental mode in lagging (see figs. 9 and 11),

0.178 x 0.357
~lzo ‘- + o:357i =4.0101 + o.357’i

2’)7

Putting Wl(f) =

that:
al ‘%=

Vi(g) =g 4-4g3 +&2 and ~=~+e, it is found

P1 =2.31, V1 =0.741, and 71 =3.43.
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W* t

Assultllng~ (5) = 0.203sin ~ 3,7 it is found that ~1 = 0.434.

Substitution into equations (22a) and (2Zb) then yields:

~lfl =qMo-(o.oo4 -o.034i) =-o.557+o.941i
.

qlll =qllo-(-0.0048 +0.0215i) =-o.oo53+o.336i

The dam@ng factor (real part of q) ‘inthe fundamental flapping mode “
is here evidently negligibly affected, while the natural frequency in
this mode is increased by about 3 percent. In the fundamental lagging
mode here, howe~er, the already low dezqpingfactor is dangerously
diminished (by about-50 percent), while the already low natural frequency
is also diminished (by about 6 percent).

(b) HLnged blades: In this case (see Numerical
BENDING VIBRATIONS ll?FIAPPING and relation (17))4

%fo
=-0.498+ i 1+ O.O5 x1.5) -(0.4g8)2 =

while (see figs. 8 and 10)

example under

-0.498+ o.909i

0.143 xO.274 + oo274i =A OW23 + 0274i
qlzo ‘- . .

2X

Putting Wl(~) =Vl(g) = g, it

11~= 0.0775, and 71 = 0.464.

ii-is found that B1 = 0.0L39.
and (22b) then yields:

qlfl
= qlfo - (O.0016

is found that: %

Moreover; assuming

Substitution into

= 7 =Pl = 0.333,

* (g) = o.13~8,

equations (22a)

- o.olo8i) =-0.496 + o.920i

qzl = qlzo - (+.00535 + 0.0254i) = +.00088 + 0.249i

‘7 ~. t
The expressions used here for ~ (5) are based on a first

W.t
approximation for ~ (5) as detetined by the static equatinn corr~

spending to the flapping equation (la) with the data assumed here.

. --

●

.
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As in dxsmple (a) for fixed blades, the fundamental.complex flapping.
frequency is here only slightly affected by the coupling, while in the
fundamental lagging mode, the natural frequency and especially the
damging factor are appreciably diminished.

VIBRATIONS OFUNBAIJ!.NC!3DBUDES–FLUTTKR

When the center of gravity of the cross sectim of a blade does
not coincide with its aeroi@amic center (Q # O) then, as can be seen
from equations (la) and (lc”),the torsional vibrations willbe aerb
dynamically coupled with the flapping vibrations. When such coupled
vibrations sre unstable, flutter is said to occur. In the present
section simple criterions ere developed for the avoidance of the
flutter of rotating helicopter blades. The analysis is, however, based
on quasi-tationsry flow (as in the previous sections) and is therefore,
strictly speaking, approximately valid only for cases of low reduced

frequencies (x)E%%where V is the ~gnitude of the inflow velocity.

Basic equations.-By putting

into equations
it is possible
condition. By

W(g,t) =w(E)#t

e(~,t) = e(@’t

(la) and(lc), andneglecting second-crder terms there,
to conibinethese equations into a single statio~
application of the Rayleigh method, with the assumpticm

w(g) = anxn(o

6(E) = bnYn(E )
}

(23)

for any given principal mode (chsracterizedby subscript n),
where ~(~) is the corresponding uncoupled mode of deflection in

*
flapping while Yn(E) is the uncoupled mode of deflection in torsion,
the followlng linear equatims me obtained for the coeffici=ts ~

. smd bn:
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(an Jn + q2an + “n) ‘bnc(Pn - ‘fn)= 0

bn

)(%(%-% -~%+%+%lq)=o

where:

Jo

Jo

(24a) -

(24b)

.

.
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L

with

The contition for the
and in not both zero) to
following quartic equation

existence of a nontrivial solution (~
equations (24a) and (24b) leads to the
in

nmde in torsion and flapping:

ckq4 + c3q3

the complex frequmcy q for the coupled

+c2q’+clq+co=o (25)

where
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For the fundamental-coupled mode, the substitutions Y1(E) ‘sin~~
and X1(E) = ~h -453 + 632 (fixed-ded blade) or X1(E) =“E (hinged

blade) may be made for the purpose of ohtalning approximate solutions
for the characteristic values of q from equati.on(25).

Stability criterions.- Neglecting internal damphg at-first, it
can be shown that the coupled torsional and flapping vibrations till be
stable8 if and only if

~n>o (26a)

while also

(cl C2C3 - C1C4
)
- COC32>0 (26b)

A simple method of-taking internal damping into account after condi-
tions (26a) end {26b) have been considered is described in appendix C.

It may be noted that inequality (26a) corresponds to a necesssry
and sufficient condition for the stability of the uncoupled torsional

vibrations of-uribalancedblades, that is, for the prevention of
torsional divergence.

lt appears convenient inpractice”to regard inequalities (26a)
and (26b) as conditions governing the proper.chordtise location of the
center of gravity of-a llade sectian with respect to the aerodynamic
center, that is, governing the suitable values of Q or ~. This iS
in accordance with the results of references 8 and 9, where the chord-
wise mass distrilutianw found to be the chief factor determining
the possibilities of flutter of helicopter blades.

If$= O, that+s, if the blades =e mass+alsnced, then flutter
cannot occur, since there will be no coupling between the torsional and
the flapping tibratians. If j <0, then it will be found that condi–
tions (26a) and (263) are usually easy to satisfy, so that flutter will
not occur. If, however, 5>0, that is, if the center of gravity of’a
blade sectionis behind the aerodynamic center, then conditims (26a)
and (26b) may be violated and flutter till occur.

In this quaei-titionwy tne of analysis, there are two important
stabilizing influences: The internal daqping (ProPorti~l to &!w
and ge) in bending ~d ti torsion ~d especi~y the aeromc
damping (proportioti to ~ or P) fn torsion. Because of these

81neq@it~es (26a) and (26b) sre the conditions that all the real

parts of q, as determinedly equation (25),be negative, so that posi-

.

.

-.

tive dsrxpingoccurs.
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influences, flutter my be prevented even when the
is behind, but not too far.behind, the aerodynamic
section.

33

center of gravity
center of a blade

Numerical example.- Consider a fixed-+mded uniform blade with the

data in figure 2. Then, with ~ = 5 (where e = O),

X1(E) ‘E 4- 4~3 + 6~2, and Y1(~) = sin $ ~ for the fundamental

coupled mode, inequality (26a) leads to the condition j < 0.186. This
is the condition for the prevention of torsional divergence (with
internal demping neglected). Inequality (26b), however, leads to the
condition O.1~< j < 0.16. Hence the critical value of j in this
case for the prevention of flutter is between 0.15 and 0.16. With
internal damping taken into aocount (~ = gw = 0.05) by the method of
appendix C, the critical.value of j is found to be between 0.16
and 0.17. To obtain some insight into the character of the flutter
vibrations in en unstable case, suppose j = 0.17. Then two of the
roots of the complete quartic (i.e., including the internal dau@ng
terms), equation (25), are found tobe q = 0.123 ~3.97i. This pair
of roots etidently corresponds to an unstable mode of vibration, since
the real parts are positive, indicating “negative aerodynamic damping,”

with a logarithmic increment of 2JCx 0.J2

3*97
3 = o.lgk6. The relative

amplitudes of the flapping and torsional vibrations in this mode can
be obtainedby substitute the values found for q into equation (24a)
or equation (2kb). It is thus found that ~= a.0~4T0.0076i,

indicating that the tip eqlitude of the flapping vibrations is only

(0.0214)2 + (0.0076)2, or 0.067 times the tip amplitude of the
torsional vibrations. This small ratio of bending amplitudes to
torsional amplitudes in flutter appears to be a familiar phenomenon.

(See reference 8.) The complex value of the ratio al/b i~ustrates,
of course, the wel.1-lmownphenomenon of phase difference% etween the
coupled bending and torsional vibrations in flutter.

Critical speed.– In addition to the design viewpoint with respect

to chordwise mass distribution for the prevention of flutter for a
given rotor angukr speed 0, another possible viewpoint here is that
of the critical angular speed. From this point of view, all pemmeters,
including j, may be considered as given, except the rotational
speed 0, which appe~s @licitly M the te~ conting Jn, ~, %,

and yn. Conditions (26a) and (26b) %her determine the critical range
of Q. ~ j > 0, for example, then condition (26a) in actu~ cases
gives an upper limit to the permissible value of Q.
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Aerodynamic coupling between laming and torsion.g– It maybe

observed that to the order of approximation used in the analysis, there
is no aerodynamic coupling between the lagglng and the torsional
vibrations, since the torsion equatim, equation (lc), does not contain
any terms in the lagging displtiement v, or in derivatives of v. It
may be noted, however, that with h@he~rder terms.such a coupling
would.exist because of a twisting couple ~c~cv, where C%c is

the mament coefficient of a blade section about the aero-c center.
For airfoil sections for which WC #O, therefore, there will be

coupling between the lagging and torsional vibrations. Since,
however, ~ in equation (lc) and e in equation (lb) will occur =
products with other first-order+uall quantities, these terms will be
smaller than other terms appeering in these equations, indicating
that the coupling between lagging end torsion is in any case small.

CONOIXSIONS

I&m a theoretical analysis of the frequency and damping chsmc–
teristlcs of the free modes of vibrations of fixed-ended end hinged
elastic helfcopta rotor blades in hovering and vertical fllght, the
following conclusicms are drawn:

1. The fund-tal natural frequency im flapping of a rotating
helicopter blade hinged at--theaxis of rotation is equal to the rotor
angular speed. If the llade is fixed-ended at the sxis of rotation,
then, unless its bending stiffness is unusually high, the fundamental
natural frequency in flappimg will be only slightly higher than the
rotor angular speed. With aerodynamic damping neglected, the rigid–
body oscillations will be an exact mode of vibration in flapping of a
blade hinged at the axis of rotation.

2. The natural frequency ofvibraticm in any principal mode in
flapping can be expressed apprmdmately by means of a simple equation.
In this equation the centrifugal contribution to the squaxe of the
natural frequency of a rotating blade in any tide is virtually the
same whether the blade is hinged or fixed at the root. However, the
elastic contribution depends on the boundary conditions at the root.
A simple method of calculating the natural frequencies of a rotating
beem in bending, based on these considerations,was developed.

3. Asinrple relation exists between the lagging and the flapping
natural frequencies of any Unqed uncoupled @ncipal mode of
vibration.

‘The discussion in this pemgraph Is valid whether the blades sre
mass-balanced or not.

.

.

.

. .
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4. If the blades are attached at a ‘smalldistance (eccentricity)
away from the rotor axis of rotation, then all the natural flapping and
lagging frequencies are increased. This effect is especially important
in the lagging motion of hinged blades, where there wotid otherwise be
no restoring forces In the fundamental mode.

5. The flapping vibrations sre heavily damped aerodynamically in
the lower modes, especially the fundamental. The internal &mping in
these nmdes is, in fact, negligible in comparison with the aerodynamic
daz@ng.

6. The ae~odynamic damping in lagging is proportionalto the
profil~ag coefficient of a blade section end is much smaller thsm
that in flapping. Consequently, the internal damping in the lower
modes of vibration in lagging is as important as the aerodynamic
damping.

7* me aer@m@C Umitmc demmdm h flappbg, lagging,
and torsion cthninishwith the prfncipal modes, in approximately inverse
proportion to the vibration frequency.

8. In flapping and torsion, the importance of aerodynamic demping
relative to that of internal damping diminishes with the principal
nmde of vibration. In lagging, however, this is not quite true in the
lower modes, since for fixed+ded blades of relatively low bending
stiffness in lagging the titernal logarithmic decrement decreases
shsrply from the fundamental to the second mode.

9. The centrif@al torque in arotating helicopter blade usually
exerts a negligible effect on the natural torsional frequencies. There
is considerable aerodynamic -ing in torsion, due to the rotation of
a blade.

10. The effect of the free torsional vibrations on the flapping and
lagging vibrations of mass-lxalancedblades is in practice negligible,
because of the relatively high natural frequencies in torsion.

.

11. In general, Coriolis, aerodynamic, and centrifugal coupling
forces exist between the flapping and lagging motions of a rotating
helicopter blade. These forces,have a seoond-rder effect on the
flapping and lagging natural frequencies and da@ng factors, which is
nevertheless appreciable in the fundamental lagging mode.

.



12. If the blades ere unbalanced, then the resulting cou~led
flapping and torsional ~ibrations my be unstable if the cross-sectional
center of gravity is too far behind the aerodynamic center. Simple
criterions for prevention of such a t~e of flutter, based on quasi-
statlonexy flow, were derived.

.

Polytechnic Institute of Brookl.yn
Brooklyn, N. Y., May 2, 1949
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Al?Pmmx A

TORSIONAL VIBRATIONS OF NONOND?ORM BIADES

Equation (5) can be mathematically transformed into the following
statioEsxy ccmiition:

1-+ ’2$”=0‘“)L

where 5 is here an operator denoting variatim. By assuming any mode

of deflection to be expressible in the form of the scries

e(g) = E bk Sin k :E ‘
k=l,3,5,...

(&)

the following set
form, is obtained

with m~l, n?

of
in

1,

linesr homogeneous equaticm, written in mtrix
the coefficients bk:

[ %m’1+ o (M)

and ~ . ~, and where I& and Vn are

constants defined thus:
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J()

I‘1 ~-1*

‘o(%EA.dJo

It will le found in =tud cases that the l&erm in the

for Im is negligible in comparison with the Ml-term.

Equations (A3), written out explicitly, look thus:

u.

expression

.

—

—

.

Iq(ru + !& )+ %(’31 + ~2’3J
+.. .+ bJ~+ &J+.. .=0

-“

‘l(’h + ‘2VJ + ‘3Fm + ‘2v3nJ + “ “ “ + bn(~ + ‘2vnJ + o ● o = 0

The condition for the existence of a non-trivial solutinn to
equations (A3) is that the determinant of the coefficients of these
equations vanish. This leads to the following determinant equation:

I&+q%m =0 (A4)

Equation (Ak) determines the natural frequencies of the wrrious
principal modes. Although equation (Ak) is, for exact calculations, of
infinite degree with an infinite nuniberof terms, it will be found in
actual calculations that this equation is rapidly convergent; that is,
that it suffices to use only a few terms in series (A2) to obtain to a
sufficient-qproximation the values of the natural frequencies of the
lower modes. This convergent property is one of the chief advantages of-
the RayleigMiitz method outlined here.
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APPENDIX B

MATKWATICAL DE!I%IISFQR BENDING VIBRATIONS

(a) Proof that relatim (J-1)would be exact if
centrifugal loads would have no effect on the modes
rotating bcam:

Suppose, first, that relation (D)
that is, suppose that

,

is in gene~al exactly
follows fro.:equation

the relation

~n2 = l&2 +

is an exact

%n2

valid. By definition of ~
(lo) that

()
11r~

=l~_ %n”
qen2‘-

t “a

,

IN FLAPPING

and only if the
of deflection of a

general relation;

(Bl)

and ~n it

(B2)

where wcn(~) is a principal mode (characterizedby subscript n) of

deflection of a rotating cable without bending stiffness, while Wen(g)
is the corresponding mode of deflection of a nonrotating beem. By
putting equations (Bl) and (B2) into equatian (10), the following
equation is obtained:

where wn(~) is the mode of deflection of a rotating beam with bending
stiffness.
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order that relation (Bl) be exact regardless of t-hevalue
it is necessery that equation (B3) be satisfied for any value

.

and since wen(~) and wcn(~) me independent of Kl, it is
therefo~ necessay thatithe following two equations be satisfied:

(%”’)”-56&w4°‘0 (B4)

.

The uni~ue solution of equation (B4) for wn(~) satisfying all .
of the %oundary conditions is

—

‘*(E) ‘w~n(g)

Sindlarly the solution of equation (B5) for wn(~) is

, Wn(g) = Wcn(g)

(B6)

(37)

Equation (B6) proves thatirelation (Bl) couldbe exact only if the modes

of deflection of a rotating besm were exactly the same as those of the
same beam when it is stationery.

To prove the converse$ su~pose relation (B6) were in general
exactly valid. Then’substitution of relation (B6), together with equa-
tion (B2), into equation (10) would lead to the following relatian:

t[(~:-qe=%(~)-’.:W4+[(’wc~)’-
Observing that wen(~) an& Wcn(g) ‘arefunctions

it follows from equation

also %12 = qen2 + %n2 -

(B8) that Wcn(~) =

Thus relation (B6)

(Twe#)’]=o (338)

not containing qen2

.

●

✎

u.

would inply relation (11).
— .
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(%) Pr60f’that relation (Ii) cannot be an exact general statement,.
whether the blades are hinged or fixed-ended:

It has been shown that relation (I-1)implies relatlcm (B7). It
till be shown, however, that relation (B7) cannot be em exact general
statement because wm(~) cannot in all cases satisfy the boundary
conditions Wcn” = wcn’~ = O required at the free tip of a beam with
bending stiffness.

By definition, wcn(~) satisfies the equation (cf. equation (10)):

Differentiating
Akthat TI =–s
Ao

‘(’w..’)’+&%’wcn=

equation (B9) three times with

(for simplicity, it is assumed

o (B9)

respect to 2, noting

here that ~ = 5), and

assuming that Wm” = Wcnttr= O at ~ = 1, the followlng relation is

obtained, where w1,
(1k’

and derivatives thereof denote the mlues

of wcn(~), of & (g), ~d of their derivatives at E = 1:

3(~n2+l)(&)~’wl’ +($)’’’wl’ +~n2(&)’’’w4 (&)lwliv=0=0 (B1O)

Since WCn(3) = w=(~), it follows from equation (B2) that

Moreover, equatian (B9) implies

(Bll)

(B12)

By putting equations (Bll) and
relation, required to be valid
mode, is obtained:

(B12) into equation (B1O), the foUawing
for any t~e of blade in every principal
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()4$ ,2%# = 3(’%?+ ‘)%$(*),’’%(*), “ (B13 )

*

.

It is evident that relation (B13) cannot be valid in general10 since,

for example, in the case
()

“ z O equation (B13) leads to an
&

absurdity, the left side being negatipe while the right side is positive
or zero.

(c) Proof that-there ereno exact tiues of ~n2 for a fixed–
ended blade: .

If there were exact values of c&2 then these would satisfy
equation (B9), with the appropriate functions Wcn(g). However, for

fixed-dedblades~ Win(0) ‘wcn’(0) = 00 ~~ from e%~~on (B9)
i.t follows that wcn(~) would have to satisfy also the condition

tlon WC; (0) = O. Moreover, by successive differentiation of eqb

tion (B9), it Is seen that all of the derivatives of wcn(~) would

have to vanish at the root of the blade. Eence wcn(~) sO. This

indicates that there cannot be any exact values of ~n2 with corre-
sponding functions wcn(~) satisfying equatim (B9) fo~ a fixed-nded
blade.

(d) Numerical check on accuracy of approximation of relation (n):

Equation (10) canbe mathematically transformed into the following
stationary condition:

The Rayleigh-itz method canbe applied to condition (B14) by setting

w =mJ#) (BYj)

where ~(g) are given functions satisfying the boundary conditions.

l%here @ be special cues tnwhich equation (B13) is valid.
For exam@e equation (B13) ~y, for a given blade, be ml-id in one
pmticfia2mode, as in the 5

undamental mode d a hinged blade,
where qel = O while %1 =-1.

.

.

-—

.

.
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The mast general sets of polynomials independently satisfying the
boundary conditions for fixed-ded and for hinged blades are:

fixed-ended:

~(~) =~m-~m(m -l)(m-2)E3 +~m(m-l)(m -3)32

1
>4m=

hinged:

1

(B16)

%$5) = Em+ ~m(m - l)(m-4)~3 -~m(m-l)(m-3)g4

m= 1, 5, 6, ~, . . .
J

~eRaylei~itz metiod (see, for eqle, reference 10) was
applied here for fixed+nded blades with the first three terms of equa-
tions (B16) in series (B15). By substituting the series for w into
the integrand of contition (B14) and differentiating this integrand
with respect to each of the three coefficients ~, a set of three linesr

. homogeneous equations in ~ was obtained, the vanishing of whose
determinant led to a cubic equation in the negative squared natural
frequencies ~2. By investigating the solutions of this cubic, it was

. found that all the three roots could, to a high degree of approximation,
be expressed in the form fi2 = –f&l - fm where fa and fu were

positiye nuders, independent of K1. This verified relati~ (11),
since the quantity –f&l could then be interpreted as *2, while

the q~tity -fcn could be interpreted as ~2.

(e) Effect of root conditions on centrifugal contributions to
natural frequencies:

AS canbe seen from referace 5 (appen~)~ the ~~ues of ~n2
in relation (11) me indepmdent of whether a blade Is hinged or fixed
at the root, since the only boundary cmdition which can in an exact
solution, by Bessel series, be satisfied by equiation(B9) for wm(~)
is w (o) =0.

r
It is significmt to check whether the approximate

metho outlined in item (d) leads to the same results in actual.calcu—
lations. For this purpose the stationary conditian, equatian (B14),
with K1 = O was applied by using four terms in series (B15) with ~(~)
for fixed-ended blades and then with ~(~) for hinged blades (see

equations (B16)). For fixed-nded blades tie followi~ values of ~n2
were obtained for the first two principal modes: ~1 = –1.035

and %22 = -6.21. For hinged blades, the corresponding values obtained

.
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‘ere %12=-1 and ~22 = ~.@. Thus the values of ~ (n = 1,2)

obtained by using series (B16) for fixed+ded blades were within
2 percent of those obtained by using the series for hinged blades.

As a further numerical check the Raylei&itz method was applied
to condition (B14) with K1 = O with the first four terms in
series (B15) with

(B17)

This series satisfies only the single boundary condition of zero
deflection at the root. The roots obtained for ~n in the first

two modes were: %2
= -1 snd ~22 = -6. Thus the simple series,

equation (B17), led to nearly the same results as either of series (B15).
It can, in fact, be shown that for a constant-or linealy varying cross–

2 thus obtataed in any mode wfllbesectional area the values of ~n
the same as the exact values obtained ly Bessel series, provided a
sufficient number of terms is use~in series (B17).

(f’)Method of calculating natural frequencies of any mode for
rotating blade of vaiable cross section:

.

.
——

By making use of relation (11) and of the fact that the centrifugal.
2 to the negative squered nitural freqU0nCief3~0contributions qcn

negligibly affected by the root conditions of–a blade, the RayleigHitz
method applied to condition (B14) leads to the following approximate
method of calculati

7

the elastic, negative squared frequencies qa2.
The value~-of ~n2 1 me the roots for q2 of the dete~tal

equation:L4

l-%he determinant in eq,uatiQn(B18) is o%viously di8gOn811y
symmetric. .

.
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= o (B18)

~d Xh( ~) or Xi(g) is given by series (B16), which satisfies all of

the boundary ccmditions in bending.12

The vslues of ~n2 are the roots for q2 of the determinantal
equation:

%1%1~2 TU+X@.2 %3+%3Q2 . . . %2%2~2

T21~1q2 T22+%2~2 T23~3q2 “ ● “ T2z+% 1~2

T31+cc31g2 ‘32~2q2

a,

‘33-33~ “ ‘ “ T3Z+% 1~2

. ..0.. ● .0... . . . . . . ● ...** ● 000

T21-21q2 TZ2+CCZ2q2 *z3+%3~2 . . . Tzl+az2q2

= o (B19)

121f the blades me fixed-ended instead of hinged at their roots)

then, according to series (B16), the subscript 1 in the determinant in
equation (B18) should be replaced by the stiscript 4.
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where

with

ftl

and Xf(E) or xg(E.) iS now given by the

whfch satisfies only the conditim of zero
equation (B18), (k-3) is the number of
while in equation (B19), t is the rnmiber

shnple series, equation (B17),

deflection at the root. In
terms used in series (B16),
of terms used in series (B17).

The chief advantage of the method-outlined is that the convergence
is rapid, even for modes above the fundamental. Consequently, only
relatively few terms need be used in actual cases h series (B15) to
obtain the natural frequencies to a sufficient approximation. Suppose,
for example, it is desired to obtati the natural frequencies for the
three lowest modes. Then one first chooses k =
three values of q2

3 and 1=3. The
obtained from eqmtions “(B18)and (B19) represent

the values correspcding to the three lowest modes. The two lowest
values of q2 will usually be more accurate than the thtrd. To improve
the accuracy one then chooses k =4 end Z =4 and obtains sgain the
roots for q.2 correspondi~ to the first three modes, as weld.as an
additional root corresponding to the fourth mode. It will usually be
found.that at least the two lowest roots for q2 thus obtained exe
negligibly different from the two lowest roats obtained wtth k = 3
and t = 3. This means that the natural frequencies of at least the
two lower modes have been determined with sufficient accuracy. The
natural frequency of the third mode could be obtained to a still further
approximation by ~lng k = 5 end Z =_5. In general it can be stated
that, if for k =k (say) and for k = k + 1 the s lowest roots
for q2 of’eq~tion (318) me practically the same, then these we the

values of ~ fo~~e . ~o~e~tmodes, Theme~o&iss~l~ly

.

.

If the order of the determinant in either equation (B18) or (B19)
is higher than three, then experience has indicated that a convenient
method of solving the detetinantal equation for any root is by
systematic trial and error. One chooses two vtiues of q2 which are

.
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believed to be fairly close to an
tinant for eabh of these values.
linesr interpolation (preferably)

47

.
aotual rod end evaluates the dete%
The value of q2 then obtained by
or extrapolation, according to which

the determinant wouldbe zero, will thmbe a clos& approxi&tion to
the actual rmt.

A convenient method of evaluating a determinant of anY order is
to transform it into a
here for a third-order

It is desired to obtain
in the present position

triangular fo~. This methodwill~e illustrated
determinant. Consider the determinant

all % a31

D= a12 ,a22 a32

a13 ?23 a33

a determinant equal to

,-

D where the elements

Multiply the first columnby ~l/all and th& subtract this column

from the second column. Also, multiply the first column by a
31/all

and subtract it from the third. Then a determinant of the following
form is obtained:

all 0 0
●

D =Dt= a12 b22 b32

a13 b23 b33
.

In Dt now rm.il.tiplythe second col~by b32/b22 and subtract it mom

the third column. Then the following result is obtained:

.
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all 0 0

a12 %2 0

alz b23 C33

These calculations should be ~erformed with a
significant figures to avoid any large errors
differences.

NACA TN 1999

all
. b22 . C33

sufficient number
due to relatively

of
small

.

,

.

.—

.

.

.
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The characteristic equation, equation (25), including internal
damping can be written in the form:

.

where F~ and 2?2 are polynomials in q with real coefficients.

The effect of internal daqping is represented by F2.

Since F2(q) << lF1(q)1, equation (Cl) can be solved for qtoa .

good approximation by ayplying Newton?s method as follows. The eq~tfon

Fl(q) = O (C2)

can be solved first. Suppose one of the roots thus obtained is ~.

Then a corrected ~~ue ql of ~ due to the internal dem@ng will be

fF2 (qo)
ql =%- (C3)

F1’(~) + ~2’(%~

Equation (C3) can be used to determine the critical value of j
thus. Suppose that from condition (26b) it is found that to prevent
flutter it Is necessary that j < Jo (say). Then j. is the critical

value of j with internal damping neglected. To take intern&L &mpfng

into account, slightly higher values of j may be chosen, and the
corresponding roots of the quartic, equation (25), including internal
damping can then be obtained by means of equations (C2) and (C3). The
minimum value of j for which at least one root of the complete quartic,
equation (25), will have a positive real part will be the critical
value of j with intern@ damping.

Near the critical value of ~, the imaginary pert of ~ will

generally be much greater than the real part, so that the actual “
congnztationscanbe simplifiedby putting ~ = iu (m real) in
equation (C3).
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l?igure1.- Cross sectionofa blade.
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Figure 2.- Blade sectionused innumerical examples.
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Principal mode of vibration

Figure3.- Flappingfrequenciesofhingedblade. Constantcross s~tion;
K1 = 0.00400; E = 0.05..
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Figure 4.- Flappingfrequenciesoffixed-endedblade. Constantcross section;
KI = 0.00400; e= 0;05.
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Principalmode ofvibration

Figure 5.- Aerodynamic and internallogarithmicdecrements ofhingedblade
in flapping.Constantcross se&ion; KI = 0.00400; e = 0.55.
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Figure 6.- Aerodynamic and internallogariihmicxlecrementsoffixed-ended
bladeinflapping.Constantcross section;K1 = 0.00400;~ = 0.05.
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Figure 8.- Laggingfrequenciesofhingedblade. Constantcross section;
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= 0.00400; ~ = 0.05.
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Figure 9.- Lagging frequenciesoffixed-endedblade. constit cross section;
~ = 0.00400;E = 0.05. “
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Figure 10.- Aerodynamic and internallogarithmicdecrements ofhingedblade
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Figure 11.- Aerodynamic and internallogarithmicdecrements offixed-ended “
bladeinlagging. Constantcross section;K2 = 0.00400;e = 0.05.
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